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Population Projections and International Migration

In November 2012, UN Population Division issued experimental
probabilistic population projections for all countries using WPP 2010
data

http://esa.un.org/unpd/ppp/
Probabilistic fertility projections based on a Bayesian hierarchical
model (BHM) for TFR (Alkema et al 2011, Demography)
Probabilistic mortality projections based on a BHM for life
expectancy (Raftery et al 2013, Demography)
BUT deterministic migration projections: persistence in the medium
term, then declining to zero (with some exceptions).

Median projections based on same methodology used in
(deterministic) WPP 2012

Probabilistic projections of net international migration needed for all
countries

Should give calibrated intervals, e.g. 80% prediction intervals should
contain the truth 80% of the time on average.
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Stylized Facts About Net International Migration
(from WPP estimates)

Sums to zero across the globe for all sex-age groups

Countries often cross over between being sending and receiving
countries:

46% of countries were either sending countries in 1950–55 and
receiving countries in 2005–2010, or vice versa.
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Trends in Migration: A Migration Paradox?
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Proportion of world population migrating has been increasing
(proxied by sum of absolute net migration)
BUT average absolute net international migration has barely
changed. Paradox?
Possible explanations?

All countries’ absolute migration rates roughly constant, but
population of countries with higher migration rates has grown more
Bigger increases in absolute migration rates in large countries.
Nonlinear changes in population and absolute migration
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Bayesian Hierarchical Model for Net International
Migration Rates

We model the net international migration rate, rc,t , in country c and
time period t by an AR(1) time series model as

(rc,t − µc) = φc(rc,t−1 − µc) + εc,t

Too few data points (12) to estimate the model reliably in each
country by itself

Solution: For each country, draw on information from other countries

Bayesian hierarchical model:

Model parameters for countries distributed about “world average”
World average parameters have a prior distribution
Bayesian estimation using Markov chain Monte Carlo (MCMC)
=⇒ Estimate for a country ≈ weighted average of its estimate and
world average estimate

Gives a sample of many possible future trajectories of migration in
all countries and periods
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Ensuring Balance

Problem: Net migration counts sum to zero across the globe for all
periods and sex-age groups

But trajectories from the BHM do not do so

Solution: Postprocess each trajectory for each sex-age group to
ensure balance.

Copyright c©2014 by Adrian E. Raftery and University of Washington All rights reserved



Ensuring Balance

Problem: Net migration counts sum to zero across the globe for all
periods and sex-age groups

But trajectories from the BHM do not do so

Solution: Postprocess each trajectory for each sex-age group to
ensure balance.

Copyright c©2014 by Adrian E. Raftery and University of Washington All rights reserved



Ensuring Balance

Problem: Net migration counts sum to zero across the globe for all
periods and sex-age groups

But trajectories from the BHM do not do so

Solution: Postprocess each trajectory for each sex-age group to
ensure balance.

Copyright c©2014 by Adrian E. Raftery and University of Washington All rights reserved



Ensuring Balance

Problem: Net migration counts sum to zero across the globe for all
periods and sex-age groups

But trajectories from the BHM do not do so

Solution: Postprocess each trajectory for each sex-age group to
ensure balance.

Copyright c©2014 by Adrian E. Raftery and University of Washington All rights reserved



Cross-Validation Prediction Experiment:
Accuracy of Projections

Net migration rates for 1950–2010 in 5-year periods from WPP

Estimate the model for (e.g.) 1950–1995, generate predictions for
1995-2010, and compare them with data.

Compare point predictions with

Persistence model: Migration counts remain constant at current
values. Similar to WPP projection.
Gravity model (Cohen 2012; preliminary)

Mean Absolute Errors by validation time period (smaller is better):

Method 5 years 15 years 30 years
Persistence 3.6 6.3 5.8
Gravity 4.7 6.6 12.3
Bayesian 3.2 4.8 5.1

Bayesian method outperformed others at all 3 forecast horizons
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Calibration of Prediction Intervals

Coverage of prediction intervals (%):

Validation time period 80% PI 95% PI
5 years 91 96
15 years 85 93
30 years 77 89

Method reasonably well calibrated at all forecast horizons
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Frequency of Cross-Overs Between Being a Sending and
Receiving Country

Over the past 60 years, 46% of countries have crossed over from
being a sending to a receiving country, or vice-versa.

Proportions predicted over the next 60 years:

Persistence: 0%
Gravity model: 29%
Bayesian model: 49%
Observed: 46%
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Migration Paradox Revisited

Proportion migrating increasing, but average migration rate constant

Resolution: Migration rates increasing more for big countries than
small ones, from very low base in 1950s
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Migration Paradox Revisited
Proportion migrating increasing, but average migration rate constant

Resolution: Migration rates increasing more for big countries than
small ones, from very low base in 1950s
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Summary

Probabilistic migration projections needed for fully probabilistic
population projections. Should:

sum to zero across the globe for all periods and sex-age groups
give calibrated prediction intervals
allow for cross-overs between sending and receiving
(46% of countries in past 60 years)
reproduce the migration “paradox”:
total migration increasing but average migration constant

We propose a Bayesian hierarchical AR(1) model for projecting net
international migration rates for all countries
Reasonably well calibrated and outperformed some other methods in
cross-validation prediction experiment

Also predicted cross-overs and reproduced the migration paradox

Possible improvements:

Better data (Abel 2013)
Apply to in-migration and out-migration (Abel et al 2013)
Demographic covariates (Kim & Cohen 2010; Billari & Dalla-Zuana
2012)
Project flows

Probabilistic population projection references at
www.stat.washington.edu/raftery/Research/soc.html
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Supplementary Slide: Ensuring Balance

Problem: Net migration counts sum to zero across the globe for all
periods and sex-age groups

But trajectories from the BHM do not do so

Solution: Postprocess each trajectory for each sex-age group to
ensure balance:

1 For the k-th simulated parameter vector, project net migration rates
for all countries one time period into the future.

2 Convert net migration rate projections into counts.
3 Break down migration counts by age and sex via model migration

schedules
4 Redistribute overflow migrants to all countries, in proportion to their

projected populations.
5 Continue projecting trajectories one time step at a time into the

future, repeating steps 1-4.
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