Probabilistic Projection of Net International Migration Rates For All Countries

Jonathan J. Azose and Adrian E. Raftery

University of Washington and University College Dublin http://www.stat.washington.edu/raftery

Supported by NICHD and Science Foundation Ireland

Joint KNOMAD-UN Population Division Seminar on the role of Migration in Population Modeling New York, April 29, 2014

Copyright ©2014 by Adrian E. Raftery and University of Washington All rights reserved

Copyright © 2014 by Adrian E. Raftery and University of Washington All rights reserved

- Population projections and international migration
- Bayesian hierarchical model for net international migration rates

- Population projections and international migration
- Bayesian hierarchical model for net international migration rates
- Assessment of method

- Population projections and international migration
- Bayesian hierarchical model for net international migration rates
- Assessment of method
- Examples

• In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data
 - http://esa.un.org/unpd/ppp/

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data
 - http://esa.un.org/unpd/ppp/
 - Probabilistic fertility projections based on a Bayesian hierarchical model (BHM) for TFR (Alkema et al 2011, *Demography*)

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data
 - http://esa.un.org/unpd/ppp/
 - Probabilistic fertility projections based on a Bayesian hierarchical model (BHM) for TFR (Alkema et al 2011, *Demography*)
 - Probabilistic mortality projections based on a BHM for life expectancy (Raftery et al 2013, *Demography*)

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data
 - http://esa.un.org/unpd/ppp/
 - Probabilistic fertility projections based on a Bayesian hierarchical model (BHM) for TFR (Alkema et al 2011, *Demography*)
 - Probabilistic mortality projections based on a BHM for life expectancy (Raftery et al 2013, *Demography*)
 - BUT deterministic migration projections: persistence in the medium term, then declining to zero (with some exceptions).

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data
 - http://esa.un.org/unpd/ppp/
 - Probabilistic fertility projections based on a Bayesian hierarchical model (BHM) for TFR (Alkema et al 2011, *Demography*)
 - Probabilistic mortality projections based on a BHM for life expectancy (Raftery et al 2013, *Demography*)
 - BUT deterministic migration projections: persistence in the medium term, then declining to zero (with some exceptions).
- Median projections based on same methodology used in (deterministic) WPP 2012

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data
 - http://esa.un.org/unpd/ppp/
 - Probabilistic fertility projections based on a Bayesian hierarchical model (BHM) for TFR (Alkema et al 2011, *Demography*)
 - Probabilistic mortality projections based on a BHM for life expectancy (Raftery et al 2013, *Demography*)
 - BUT deterministic migration projections: persistence in the medium term, then declining to zero (with some exceptions).
- Median projections based on same methodology used in (deterministic) WPP 2012
- Probabilistic projections of net international migration needed for all countries

- In November 2012, UN Population Division issued experimental probabilistic population projections for all countries using WPP 2010 data
 - http://esa.un.org/unpd/ppp/
 - Probabilistic fertility projections based on a Bayesian hierarchical model (BHM) for TFR (Alkema et al 2011, *Demography*)
 - Probabilistic mortality projections based on a BHM for life expectancy (Raftery et al 2013, *Demography*)
 - BUT deterministic migration projections: persistence in the medium term, then declining to zero (with some exceptions).
- Median projections based on same methodology used in (deterministic) WPP 2012
- Probabilistic projections of net international migration needed for all countries
 - Should give calibrated intervals, e.g. 80% prediction intervals should contain the truth 80% of the time on average.

Stylized Facts About Net International Migration

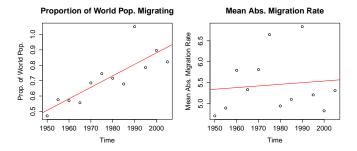
(from WPP estimates)

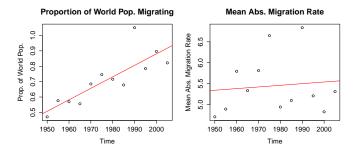
Copyright ©2014 by Adrian E. Raftery and University of Washington All rights reserved

Stylized Facts About Net International Migration

(from WPP estimates)

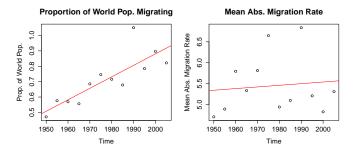
• Sums to zero across the globe for all sex-age groups

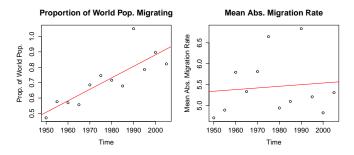

Copyright ©2014 by Adrian E. Raftery and University of Washington All rights reserved


Stylized Facts About Net International Migration (from WPP estimates)

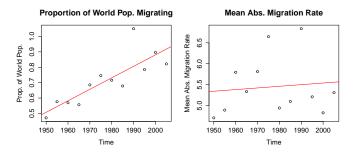
- Sums to zero across the globe for all sex-age groups
- Countries often cross over between being sending and receiving countries:

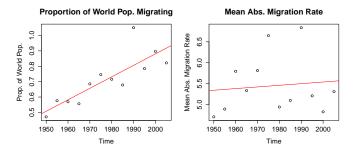
Stylized Facts About Net International Migration (from WPP estimates)

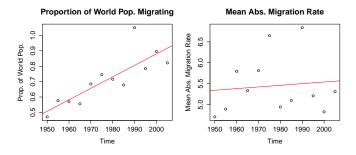

- Sums to zero across the globe for all sex-age groups
- Countries often cross over between being sending and receiving countries:
 - 46% of countries were either sending countries in 1950–55 and receiving countries in 2005–2010, or vice versa.



• Proportion of world population migrating has been increasing (proxied by sum of absolute net migration)


Copyright ©2014 by Adrian E. Raftery and University of Washington All rights reserved


- Proportion of world population migrating has been increasing (proxied by sum of absolute net migration)
- BUT average absolute net international migration has barely changed. Paradox?


- Proportion of world population migrating has been increasing (proxied by sum of absolute net migration)
- BUT average absolute net international migration has barely changed. Paradox?
- Possible explanations?

- Proportion of world population migrating has been increasing (proxied by sum of absolute net migration)
- BUT average absolute net international migration has barely changed. Paradox?
- Possible explanations?
 - All countries' absolute migration rates roughly constant, but population of countries with higher migration rates has grown more

- Proportion of world population migrating has been increasing (proxied by sum of absolute net migration)
- BUT average absolute net international migration has barely changed. Paradox?
- Possible explanations?
 - All countries' absolute migration rates roughly constant, but population of countries with higher migration rates has grown more
 - Bigger increases in absolute migration rates in large countries.

- Proportion of world population migrating has been increasing (proxied by sum of absolute net migration)
- BUT average absolute net international migration has barely changed. Paradox?
- Possible explanations?
 - All countries' absolute migration rates roughly constant, but population of countries with higher migration rates has grown more
 - Bigger increases in absolute migration rates in large countries.
 - Nonlinear changes in population and absolute migration

Copyright ©2014 by Adrian E. Raftery and University of Washington All rights reserved

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

• We model the net international migration rate, $r_{c,t}$, in country c and time period t by an AR(1) time series model as

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

• Too few data points (12) to estimate the model reliably in each country by itself

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries
- Bayesian hierarchical model:

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries
- Bayesian hierarchical model:
 - Model parameters for countries distributed about "world average"

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries
- Bayesian hierarchical model:
 - Model parameters for countries distributed about "world average"
 - World average parameters have a prior distribution

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries
- Bayesian hierarchical model:
 - Model parameters for countries distributed about "world average"
 - World average parameters have a prior distribution
 - Bayesian estimation using Markov chain Monte Carlo (MCMC)

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries
- Bayesian hierarchical model:
 - Model parameters for countries distributed about "world average"
 - World average parameters have a prior distribution
 - Bayesian estimation using Markov chain Monte Carlo (MCMC)
 - \implies Estimate for a country \approx weighted average of its estimate and world average estimate

Bayesian Hierarchical Model for Net International Migration Rates

• We model the net international migration rate, $r_{c,t}$, in country c and time period t by an AR(1) time series model as

$$(r_{c,t} - \mu_c) = \phi_c(r_{c,t-1} - \mu_c) + \varepsilon_{c,t}$$

- Too few data points (12) to estimate the model reliably in each country by itself
 - Solution: For each country, draw on information from other countries
- Bayesian hierarchical model:
 - Model parameters for countries distributed about "world average"
 - World average parameters have a prior distribution
 - Bayesian estimation using Markov chain Monte Carlo (MCMC)
 - $\bullet \implies$ Estimate for a country \approx weighted average of its estimate and world average estimate

• Gives a sample of many possible future trajectories of migration in all countries and periods

Ensuring Balance

• Problem: Net migration counts sum to zero across the globe for all periods and sex-age groups

Ensuring Balance

- Problem: Net migration counts sum to zero across the globe for all periods and sex-age groups
- But trajectories from the BHM do not do so

Ensuring Balance

- Problem: Net migration counts sum to zero across the globe for all periods and sex-age groups
- But trajectories from the BHM do not do so
- Solution: Postprocess *each trajectory* for *each sex-age group* to ensure balance.

• Net migration rates for 1950-2010 in 5-year periods from WPP

- Net migration rates for 1950–2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.

- Net migration rates for 1950–2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)
- Mean Absolute Errors by validation time period (smaller is better):

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)
- Mean Absolute Errors by validation time period (smaller is better):

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)
- Mean Absolute Errors by validation time period (smaller is better):

Method 5 years 15 years 30 years

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)
- Mean Absolute Errors by validation time period (smaller is better):

Method	5 years	15 years	30 years
Persistence	3.6	6.3	5.8

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)
- Mean Absolute Errors by validation time period (smaller is better):

Method	5 years	15 years	30 years
Persistence	3.6	6.3	5.8
Gravity	4.7	6.6	12.3

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)
- Mean Absolute Errors by validation time period (smaller is better):

Method	5 years	15 years	30 years
Persistence	3.6	6.3	5.8
Gravity	4.7	6.6	12.3
Bayesian	3.2	4.8	5.1

- Net migration rates for 1950-2010 in 5-year periods from WPP
- Estimate the model for (e.g.) 1950–1995, generate predictions for 1995-2010, and compare them with data.
- Compare point predictions with
 - Persistence model: Migration counts remain constant at current values. Similar to WPP projection.
 - Gravity model (Cohen 2012; preliminary)
- Mean Absolute Errors by validation time period (smaller is better):

Method	5 years	15 years	30 years
Persistence	3.6	6.3	5.8
Gravity	4.7	6.6	12.3
Bayesian	3.2	4.8	5.1

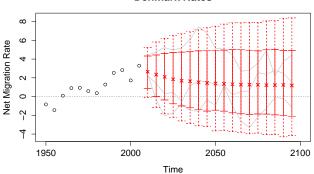
• Bayesian method outperformed others at all 3 forecast horizons

• Coverage of prediction intervals (%):

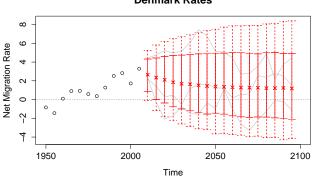
Validation time period 80% PI 95% PI

Validation time period	80% PI	95% PI
5 years	91	96

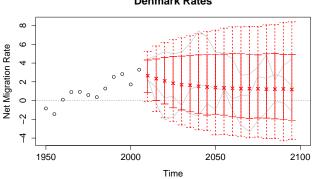
Validation time period	80% PI	95% PI
5 years	91	96
15 years	85	93


Validation time period	80% PI	95% PI
5 years	91	96
15 years	85	93
30 years	77	89

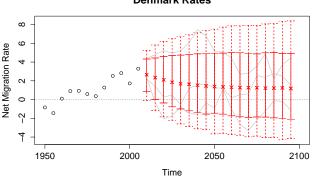
• Coverage of prediction intervals (%):


Validation time period	80% PI	95% PI
5 years	91	96
15 years	85	93
30 years	77	89

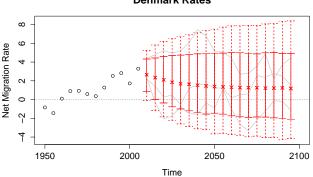
• Method reasonably well calibrated at all forecast horizons



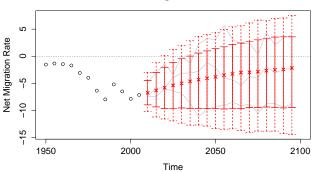
Denmark Rates


Denmark Rates

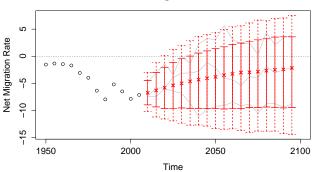
• Crossed over from sending to receiving country


Denmark Rates

- Crossed over from sending to receiving country
- Median projection: continuing (but declining) in-migration

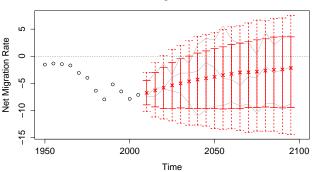

Denmark Rates

- Crossed over from sending to receiving country
- Median projection: continuing (but declining) in-migration
- But nonnegligible probability of renewed out-migration



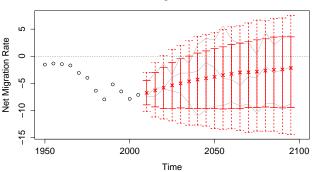
Denmark Rates

- Crossed over from sending to receiving country
- Median projection: continuing (but declining) in-migration
- But nonnegligible probability of renewed out-migration
 - and also of increased in-migration

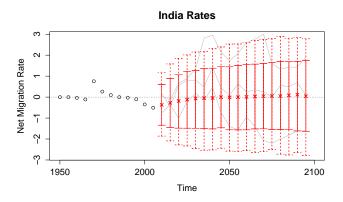


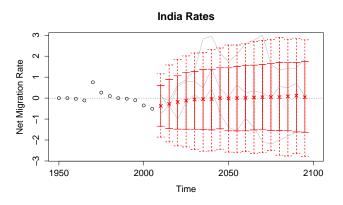
Nicaragua Rates

Nicaragua Rates

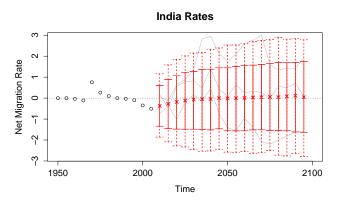

• Classic sending country with high out-migration

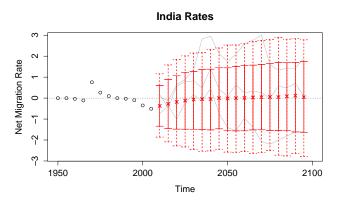
Nicaragua Rates


- Classic sending country with high out-migration
- Median projection is for this to continue, but at a reduced rate

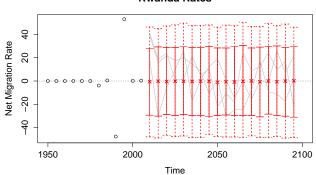

Nicaragua

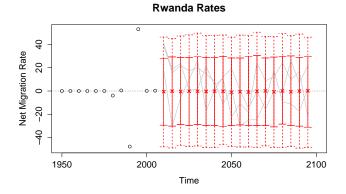
Nicaragua Rates

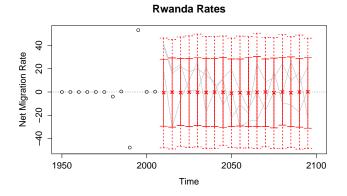

- Classic sending country with high out-migration
- Median projection is for this to continue, but at a reduced rate
- Continued high out-migration, and becoming a receiving country by 2100, also (less likely) possibilities

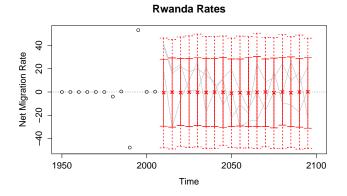


• Large country with very low migration rates (< 1 per 1,000)


Copyright ©2014 by Adrian E. Raftery and University of Washington All rights reserved


- Large country with very low migration rates (< 1 per 1,000)
- Median projection continues near zero


- Large country with very low migration rates (< 1 per 1,000)
- Median projection continues near zero
- But *absolute* migration rates projected to increase, closer to the world average (across countries) of 5 per 1,000.


Rwanda Rates

• Dominated by large spikes in 1990s

- Dominated by large spikes in 1990s
- Median projection is close to zero

- Dominated by large spikes in 1990s
- Median projection is close to zero
- But allows for the possibility of future large spikes

• Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.

- Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.
- Proportions predicted over the next 60 years:

- Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.
- Proportions predicted over the next 60 years:

- Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.
- Proportions predicted over the next 60 years:

Persistence: 0%

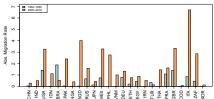
- Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.
- Proportions predicted over the next 60 years:

Persistence:	0%
Gravity model:	29%

- Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.
- Proportions predicted over the next 60 years:

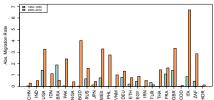
Persistence:	0%
Gravity model:	29%
Bayesian model:	49%

- Over the past 60 years, 46% of countries have crossed over from being a sending to a receiving country, or vice-versa.
- Proportions predicted over the next 60 years:

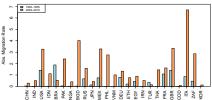

Persistence:	0%
Gravity model:	29%
Bayesian model:	49%
Observed:	46%

• Proportion migrating increasing, but average migration rate constant

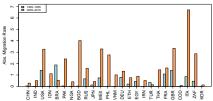
- Proportion migrating increasing, but average migration rate constant
 - Resolution: Migration rates increasing more for big countries than small ones, from very low base in 1950s

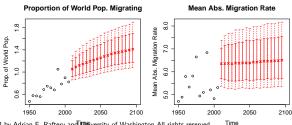

- Proportion migrating increasing, but average migration rate constant
 - Resolution: Migration rates increasing more for big countries than small ones, from very low base in 1950s

- Proportion migrating increasing, but average migration rate constant
 - Resolution: Migration rates increasing more for big countries than small ones, from very low base in 1950s


- Proportion migrating increasing, but average migration rate constant
 - Resolution: Migration rates increasing more for big countries than small ones, from very low base in 1950s

• Bayesian model successfully reproduces it:


- Proportion migrating increasing, but average migration rate constant
 - Resolution: Migration rates increasing more for big countries than small ones, from very low base in 1950s


• Bayesian model successfully reproduces it:

- Proportion migrating increasing, but average migration rate constant
 - Resolution: Migration rates increasing more for big countries than small ones, from very low base in 1950s

Bayesian model successfully reproduces it:

Copyright ©2014 by Adrian E. Raftery and Offiversity of Washington All rights reserved

• Probabilistic migration projections needed for fully probabilistic population projections. Should:

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant

• We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox
- Possible improvements:

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox
- Possible improvements:
 - Better data (Abel 2013)

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox
- Possible improvements:
 - Better data (Abel 2013)
 - Apply to in-migration and out-migration (Abel et al 2013)

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox
- Possible improvements:
 - Better data (Abel 2013)
 - Apply to in-migration and out-migration (Abel et al 2013)
 - Demographic covariates (Kim & Cohen 2010; Billari & Dalla-Zuana 2012)

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox
- Possible improvements:
 - Better data (Abel 2013)
 - Apply to in-migration and out-migration (Abel et al 2013)
 - Demographic covariates (Kim & Cohen 2010; Billari & Dalla-Zuana 2012)
 - Project flows

- Probabilistic migration projections needed for fully probabilistic population projections. Should:
 - sum to zero across the globe for all periods and sex-age groups
 - give calibrated prediction intervals
 - allow for cross-overs between sending and receiving (46% of countries in past 60 years)
 - reproduce the migration "paradox": total migration increasing but average migration constant
- We propose a Bayesian hierarchical AR(1) model for projecting net international migration rates for all countries
- Reasonably well calibrated and outperformed some other methods in cross-validation prediction experiment
 - Also predicted cross-overs and reproduced the migration paradox
- Possible improvements:
 - Better data (Abel 2013)
 - Apply to in-migration and out-migration (Abel et al 2013)
 - Demographic covariates (Kim & Cohen 2010; Billari & Dalla-Zuana 2012)
 - Project flows
- Probabilistic population projection references at

Supplementary Slide: Ensuring Balance

- Problem: Net migration counts sum to zero across the globe for all periods and sex-age groups
- But trajectories from the BHM do not do so
- Solution: Postprocess *each trajectory* for *each sex-age group* to ensure balance:
 - For the *k*-th simulated parameter vector, project net migration rates for all countries one time period into the future.
 - Onvert net migration rate projections into counts.
 - Break down migration counts by age and sex via model migration schedules
 - Redistribute overflow migrants to all countries, in proportion to their projected populations.
 - Ontinue projecting trajectories one time step at a time into the future, repeating steps 1-4.